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Finite element methods, using bilinear basis functions supplemented by singular 
functions, are described for solving elliptic boundary value problems with corner 
singularities. The procedure of mesh refinement in the finite element method in the 
neighborhood of a singularity is illustrated with respect to the harmonic mixed boundary 
value problem of the slit. Numerical results obtained right up to the tip of the slit are 
compared at selected points in the field with values obtained by dual series and finite 
difference methods. 

1. INTRODUCTION 

In the approximate solution of elliptic boundary value problems in two 
dimensions by piecewise polynomial functions, perhaps the greatest inaccuracies 
are due to boundary singularities. In such problems, high accuracy cannot be 
obtained by using approximating subspaces consisting of piecewise polynomial 
functions only, and these functions must be supplemented with singular functions 
which correspond to the leading singular terms of the expansions of the exact 
solution at the particular singular points on the boundary. This approach was 
first used by Fix [3] for calculating eigenvalues of L-shaped membranes where 
the approximating Hermite subspace spanned by a basis of piecewise bicubic 
polynomials was supplemented by approximate singular functions. More recently 
Fix and Wakoff [l, Appendix C] have used this method Lo calculate the lowest 
eigenvalues of the following rectangular membranes; a hollow square, a T-shaped 
domain, and an H-shaped domain. 

In the present paper an extremely simple version of this “method of suppk- 
mentary singular functions” (viz. piecewise bilinear functions plus appropriate 
supplementary singular functions) is applied to a singular harmonic mixe 
boundary-value problem, and the results obtained are shown to be comparable in 
accuracy with those obtained by other more specialized methods which have beers 
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used recently to solve this problem. It is worth pointing out that the method of 
the present paper is applicable irrespective of the number of singularities of known 
type in the region. The main object of the present paper is to make a sophisticated 
new extension of finite element methods more accessible. 

2. THE HARMONIC MIXED BOUNDARY VALUE PROBLEM 

The mixed boundary value problem considered consists of 

2&+&o 

in the square region -(7-r/2) < x, y < 3-12 with the slit y = 0, 0 
mixed boundary conditions consist of 

8(x, -k$-) = 0, -+-1x<+, 

u -qy = 1000, 
( ) 2 o<y+ 

(2-l) 

x < ~12. The 

(2.2) 

From the antisymmetry of the problem, it is only necessary to consider half the 
region, viz. the rectangle R [-(r/2) < x < 5712, 0 < y < z-/2], and to add the 
boundary condition 

u(x,O) = 500, - + < x < 0 

to the original boundary conditions. The modified region and boundary conditions 
are illustrated in Fig. 1, where we have introduced 

u = u - 500. 
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FIG. 1. The modified source problem 

3. THE BASIS FUNCTIONS 

The region is now divided up into rectangular elements as shown iu Fig. 2, wit 
the small region ABCD, {-(z-/14) < x < 7r/l4) x (0 < y < r/14) containing the 
singular point 0, further subdivided into thirty two square elements of side ~156. 
Two semicricles center 0 and radii n/112 and ~r/56, respectively, are constructed 
inside EFGH, (--(r/56) < x < r/56) x (0 < y < 7r/56>, a small region containing 

R N 

FIG. 2. Part of the grid showing the refinement used near the origin, inside the region ABCD 
(-v/l4 < x < w/14) x (0 <y < P/14). 
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0 and lying inside ABCD (see Fig. 2). The procedure for reducing the elements from 
squares of side ~17 to squares of side n-156 inside ABCD is accomplished by 
drawing in the lines which are signified by dashes in Fig. 2.’ Since each nodal point 
on ABCD (except A and D) belongs to four rectangular (or square) elements, the 
corresponding basis function is composed of four parts and has support only on 
these four rectangular (or square) elements. The basis functions at the nodes inside 
ABCD are obtained simply since each node belongs to four equal square elements, 
whilst those at the nodes outside ABCD remain unchanged except for those at 
2, , 2, , 2, , 2, , and 2, . The extra grid points introduced due to the refinement 
are X, , X, , X, , and X4 . The supports of the basis functions at 2, , 2, , 2, , 2, , 
2, and X1 , X, , X, , X4 are obvious from Fig. 2. 

On the boundary of the original region, there are three distinct types of nodal 
point: 

(i) Nodes where natural boundary conditions are given, and no special basis 
functions need be constructed. 

(ii) Nodes where Dirichlet boundary conditions are given, and at such nodes 
the coefficients of the respective basis are the given function values. 

(iii) The node 0, which is a singular point, and will require singular basis 
functions which correspond to the leading singular terms of the expansion of the 
exact solution at the point 0. In this problem, following Lehman [5] and Wigley [9], 
the solution near the point 0 is of the form 

U = u - 500 = a,@ cos i + azr cos 9 + a,r3J2 cos $ + 00’) (3.1) 

and consequently the first three singular basis functions can be conveniently 
chosen (Fix [3]), as 

w&“, 0) = 2112R1/2 cos e/2, O<R<+, 

= 2(R - 1)” (IOR - 3) cos 8/2, &<R<l, 

= 0, R 3 1; (3.2) 

w2(r, 0) = 2R cos 8, O<R<& 

= 2(R - 1)2 (12R - 4) cos 8, 8,(R<l, 

= 0, R > 1; (3.3) 

wS(r, 0) = 23/2R3iz cos 31912, O<R<$, 

= 2(R - 1)2 (14R - 5) cos 30/2, +<R,(l, 
ZZ 0, R > 1; (3.4) 

where R = 56 r/n-. 
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We now consider the expansion 

V = 5 aiwi , 
i=l 

(3.3 

where w~(Y, 0), wz(r, 0) and W&Y, 6) are given by (3.2), (3.3), and (3.4), respectively, 
and the basis functions wj(x, y), j = 4(1)N are chosen to be bilinear forms. All 
the basis functions at grid points inside the complete region shown in Fig. 2 vanish 
on the boundary of the region, whereas basis functions-at nodes on the boundary 
where Dirichlet conditions are given take the value unity at the node in question, 
and the value zero at other boundary nodes. No special basis functions are of 
course required for boundary nodes where Neumann conditions are given. 

4. SOLUTION OF THE PROBLEM 

The construction of the basis functions wi , i = l(l)N, has been influenced by the 
shape and number of the elements making up the complete region, the boundary 
conditions, whether Dirichlet or Neumann, and of course the fact that 0 is a 
singular point. So far the form of the differential equation (2.1) has not been used. 
The solution of (2.1) together with natural or Dirichlet boundary conditions is 
equivalent to minimising the integral 

a4 = j j, [(g)” + ($,‘] as 
over a class of functions v E H1. We now consider V as given by (3.5) to be an 
approximation to v, and substitution of (3.5) into (4.1), followed by ~nimisatio~ 
with respect to the variable coefficients ai, leads to an approximate solution of 
the original problem. It is convenient to keep the integrand in (4.1) in Cartesian 
coordinates for all elements except EFGH, where it is simpler to consider it in 
polar coordinates. 

The rate of convergence of the approximate solution V to the exact solution a 
of this class of problem as N -+ co has been covered by Fix [4], who shows that if 

(1) all basis functions are bilinear functions outside some neighborhood of 0, 

(2) coefficients ci exist such that 

v - C ciwi = O(P), @J) 
z 

throughout some other neighborhood of 0, then 

581/W-4 
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where 

and h is the largest grid spacing. This order of convergence is the same as that 
obtained by Birkhoff, Schultz, and Varga [2], using only bilinear basis functions 
in rectangular regions without singularities. 

5. NUMERICAL RESULTS 

The results obtained at grid points outside the fine mesh region ABCD are given 
in Table I. The results are quoted to three significant figures, and the values 
obtained using two singular basis functions w1 and w2 are identical to four signifi- 

TABLE I 

Values calculated at grid points outside the region ABCD excluding X, , X, , X, and X, . 
At points at which a comparison was possible the alternative values are 

(a) Whiteman, co> Motz. 

90 
89(b) 

88 

71 

92 

90 
92(a) 
90(b) 

72 
75(a) 
73(b) 

110 147 203 276 362 453 500 

108 144 201 275 361 453 
109(a) 145(a) 201(a) 276(a) 362(a) 454(a) 
107(b) 143(b) 200(b) 276(b) 363(b) 454(b) 

88 124 183 263 355 451 
90(a) 124(a) 183(a) 265(a) 357(a) 452(a) 
89(b) 123cb) 182(b) 265(b) 357(b) 452(b) 

39 41 51 78 
43(a) 5369 79(a) 
41(b) 52(b) 78(b) 

0 0 0 0 

141 
141(a) 
139(b) 

.O 

242 347 450 
2444 348(a) 450(a) 
245(b) 34gcD) 450(b) 

227 344 449 
228(a) 343(a) 448(a) 
227(b) 343(b) @Yb) 

500 

500 

500 

500 

cant figures with those obtained using three singular basis functions w, , w2 and w, . 
A comparison is made with the values obtained by Whiteman l-71 and Motz [6] 
using dual series and finite difference methods, respectively. 

The values obtained at grid points inside the fine mesh region ABCD are given 
in Table II. These are quoted to four significant figures, and compared with values 
obtained by Whiteman [S] using a conformal transformation followed by finite 
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difference methods. The results are quoted for the finite element method using 
bilinear basis functions supplemented first by two singular basis functions rvl an 
and w2, and then by three singular basis functions w1 , w2 and w3 . The actual 
coefficients of the singular basis functions are shown in Table III. 

There is no intention in the present paper of obtaining high accuracy results 
for the particular problem of the slit. These could be obtained by using bicubic 
instead of bilinear basis functions supplemented by the singular functions r1!21 

TABLE II 

Values calculated at the grid points inside the region ABCD, the lower figure in each 
pair is that given by Whiteman. The numbers in parentheses indicate the changes 

in the calculated values when only two singular functions were used. 

61.4 68.9 78.3 
61.9 69.5 78.8 

47.8 
48.4 

(+.l) 
32.8 
33.4 

c+.v 
16.7 
17.1 

0.0 

(+.I) 
54.5 
55.1 

38.1 45.6 
38.7 45.6 

19.7 24.2 
20.1 24.8 

0.0 

63.4 
64.0 

0.0 

H.1) (+.I) iJr.1) 

89.7 103.3 118.1 134.3 
90.2 103.8 119.2 135.7 

(+.I) 
75.0 89.7 
75.6 90.6 

(+.1) (+.lj 
56.9 73.3 
56.9 74.6 

(f.1) c+.o (+.a (+.I) (+.I) 
32.9 51.4 79.6 109.7 134.5 156.3 
33.6 53.2 83.7 110.9 136.1 157.5 

0.0 0.0 

151.2 168.2 
152.7 169.5 

(-t-.1) 
106.9 
108.3 

125.6 
127.2 

(+.I) i-b.11 
144.6 163.1 
146.2 164.6 

(1.1) (+.I) (i.1) ct.11 
94.1 116.7 138.7 159.0 
96.2 118.8 140.4 160.4 

t+.41 (-t-.1) (+a (3-S) 
74.4 106.9 132.9 156.6 
76.4 108.9 134.4 156.5 

TABLE III 

Coefficients of Singular Basis Functions 

No. of singular 
basis functions 

2 11.483 -7.683 - 

3 11.324 -7.117 $0.652 
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r3i2 and r5J2. This would produce an order of convergence O(P) instead of 
O(h) as given by (4.3) (Fix [4]). The object of the present note is to show how finite 
element methods supplemented by singular basis functions can cope in a practical 
manner with elliptic problems with corner singularities. In particular, the refinement 
of the mesh in the neighborhood of a singularity presents no difficulty from the 
point of view of construction of basis functions. 

In conclusion, it is worth pointing out that the great merit of the finite element 
method as distinct from other methods such as dual series and finite difference 
methods for dealing with singularities is that the solution is obtained right up to 
the singularity. The accuracy of this solution near the singularity depends mainly 
on the accuracy of the coefficients of the term r112. In mathematical terms this 
accuracy is measured by the difference between a, in (3.5) and c1 in (4.2). 
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